Adaptive Seat to Reduce Neck Injuries for Female and Male Occupants

Biomechanical Data for a Computational Model of an Average Female

Astrid Linder, PhD
VTI, Swedish National Road and Transport Research Institute

6th World Congress of Biomechanics
1-6 August 2010, Singapore
Statistics – Whiplash injuries

- App. **70% of the costs** of all injuries leading to permanent medical impairment for the insurance companies

- **Costs: > 4 billion €** in Europe (estimated on insurance costs)

- Recent developed anti-whiplash systems

- Impact directions
Whiplash – Risk of injuries

Females have up to 3 times larger risk of injuries than males.
ADSEAT the project

Aims
- Provide guidance in how to reduce the risk of whiplash injuries by enhanced understanding of injury criteria and development of seat evaluation tools.
- Budget: 3.45 million Euros, 2.5 million Euros from the European Commission, FP7.
- 12 partner
- Duration: 42 months, 2009-2013
ADSEAT partners

<table>
<thead>
<tr>
<th>Partner Number</th>
<th>Partner name</th>
<th>Partner short name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swedish National Road and Transport Research Institute</td>
<td>VTI</td>
<td>Sweden</td>
</tr>
<tr>
<td>2</td>
<td>Chalmers University</td>
<td>Chalmers</td>
<td>Sweden</td>
</tr>
<tr>
<td>3</td>
<td>Ludwig-Maximilians-University Munich</td>
<td>LMU</td>
<td>Germany</td>
</tr>
<tr>
<td>4</td>
<td>Folksam</td>
<td>Folksam</td>
<td>Sweden</td>
</tr>
<tr>
<td>5</td>
<td>Graz University of Technology</td>
<td>GUT</td>
<td>Austria</td>
</tr>
<tr>
<td>6</td>
<td>University de Strasbourg</td>
<td>UdS</td>
<td>France</td>
</tr>
<tr>
<td>7</td>
<td>AGU Zurich</td>
<td>AGU</td>
<td>Switzerland</td>
</tr>
<tr>
<td>8</td>
<td>Loughborough University</td>
<td>LU</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>9</td>
<td>First Technology</td>
<td>FTSS</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>10</td>
<td>CIDAUT</td>
<td>CIDAUT</td>
<td>Spain</td>
</tr>
<tr>
<td>11</td>
<td>Volvo Cars</td>
<td>Volvo</td>
<td>Sweden</td>
</tr>
<tr>
<td>12</td>
<td>Faurecia</td>
<td>Faurecia</td>
<td>France</td>
</tr>
</tbody>
</table>
Work Packages

WP1 Real-world data,
Dr Wolfram Hell, LMU

WP2 Biological tests,
Prof. Mats Svensson, Chalmers

WP3 Computational modelling,
Mr Paul Lemmen, FTSS

WP4 Injury criteria / thresholds,
Dr Kai-Uwe Schmitt, AGU

WP5 Seat evaluation guidelines,
Prof. Hermann Steffan, GUT

WP6 Management and WP7 Dissemination,
Dr Astrid Linder, VTI
Rear impacts – volunteer test

Results - Horizontal displacement

Head

T1

Head relative to T1

5 km/h

7 km/h

Time [ms]
Results

- The head x-acceleration peaks were on average higher and earlier for the females.

- The head, T1, and head relative to T1 x-displacement peaks were on average lower and earlier.

- The initial head-to-head restraint distance was on average smaller for the females, resulting in earlier head-to-head restraint contact time for the females.

- Larger rebound motion for the females.
ADSEAT

Average female
Stature to be defined
Weight in ADSEAT

BioRID
50th percentile male
Stature: ~1.77 m
Weight: 77.7 kg

6th World Congress of Biomechanics 1-6 August 2010
EvaRID Anthropometrical Specifications

Stature: 161.8 cm
Weight: 62.3 kg
Sitting Height: 84.4 cm

Schneider et al (1983)

Detailed anthropometric data
- Length of limbs
- Weight and volume of various body parts

Diffrient et al. (1974), Young et al. (1983) and Schneider et al. (1983)
Schneider et al. 1983

Phase 1
- Definition of dummy sizes

Phase 2
- Seated posture
- Seat casting
 Seat/Subject interface contours
- Fabrication of contoured hard seats

Phase 3
- Surface landmarks and contours
- Seated anthropometry

<table>
<thead>
<tr>
<th>HANES study (Abraham et al 1979)</th>
<th>95th perc Male</th>
<th>50th perc Male</th>
<th>50th perc Female</th>
<th>5th perc Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stature [cm]</td>
<td>186.9</td>
<td>175.3</td>
<td>161.8</td>
<td>151.1</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>102.3</td>
<td>77.3</td>
<td>62.3</td>
<td>47.3</td>
</tr>
<tr>
<td>Sitting height [cm]</td>
<td>96.6</td>
<td>90.1</td>
<td>84.4</td>
<td>78.1</td>
</tr>
</tbody>
</table>

N=8 N=8 N=8 N=8 N=8 N=8 N=8 N=8

Data not analyzed

N=25 N=25 N=25
Dummy Specifications - Weight and Volume

Young et al. 1983
Dummy Specifications – Joint Locations

Diffrient et al. 1974
Work in process: BioRID and EvaRID Comparisons
Presentation of results 2010

IRCOBI conference, 15-16 September, Hannover

Kullgren A & Krafft M:
GENDER ANALYSIS ON WHIPLASH SEAT EFFECTIVENESS: RESULTS FROM REAL-WORLD CRASHES

Carlsson A, Siegmund G P; Linder A, Svensson MY:
MOTION OF THE HEAD AND NECK OF FEMALE AND MALE VOLUNTEERS IN REAR IMPACT CAR-TO-CAR TESTS AT 4 AND 8 KM/H

EvaRID a dummy model representing females in rear end impacts
Acknowledgments

Funding provided by:
Swedish Governmental Agency for Innovation Systems (VINNOVA)

The Swedish insurance company Folksam Research Foundation (Folksam Forskningsstiftelse)

IIHS, Insurance Institute for Highway Safety

VTI, Swedish National Road and Transport Research Institute

Data provided by:
MEA Forensic Engineers & Scientists
Thank you for your attention

www.vti.se/adseat